Пожалуйста помогите решить.!!!! НАЙТИ ПРОИЗВОДНЫЕ dy делить на dx данных функций: y=кореньиз 1-4x делить на x^2
НАЙТИ ПРОИЗВОДНЫЕ y' =dy/dx данных функций: y=корень(1-4x)/x²; y=ln(x+корень(x^2+a)); y=sinx/(1+tgx); y=sin^4x +cos^4 x Решение y=корень(1-4x)/x² y' = ((корень(1-4x))' *x^2 -корень(1-4x)*(x²)')/x^4 = = ((1/2)*(1-4x)^(-1/2)*(-4)*x^2 -корень(1-4x)*2x)/x^4 = =(-2x²/корень(1-4x) -2x*корень(1-4х))/x^4 =-2/(x²корень(1-4x)) -2корень(1-4х))/x^3 у=ln(x+корень(x^2+a)) y' = (ln(x+корень(x^2+a)))' = (1/(x+корень(x^2+a)))*(x+корень(x^2+a))'= =(1/(x+корень(x^2+a)))*(1+(1/2)*(x^2+a)^(-1/2)*2x)= =(1+x/корень(x^2+a))/(x+корень(x^2+a)) = =( (x+корень(x^2+a))/корень(x^2+a))/(x+корень(x^2+a))= = 1/корень(x^2+a) y=sinx/(1+tgx); y' = (sinx/(1+tgx))' = ((sinx)' *(1+tgx) - sinx*(1+tgx)')/(1+tgx)² = = (cosx*(1+tgx) - sinx*(1/cos²x))/(1+tgx)²= =(cosx + sinx - sinx/cos²x))/(1+tgx)² (1+tgx)² =1+tg²x+2tgx =1/cos²x +2sinx/cosx =(1+sin(2x))/cos²x (cosx + sinx - sinx/cos²x))/(1+tgx)² = =(cosx + sinx - sinx/cos²x))/((1+sin(2x))/cos²x)= =(cos³x+cos²x*sinx -sinx)/(1+sin(2x)) y=sin^4(x) +cos^4(x) y' = (sin^4(x) +cos^4(x))' = 4sin³(x)*cos(x) +4cos³(x)*sin(x) = = 4sin(x)*cos(x)(sin²(x) + cos²(x)) = 4sin(x)*cos(x) =2sin(2x)