Длины всех ребер...

Тема в разделе "Геометрия", создана пользователем ChaKa_KhaN, 8 мар 2010.

  1. ChaKa_KhaN

    ChaKa_KhaN New Member

    Длины всех ребер тэтраэдра равны между собой, все вершины тэтраэдра одинаково удалены от некоторой плоскости на расстояние 6 . Найдите длину ребратэтраэдра ( рассмотреть два случая)
     
  2. murena

    murena New Member

    Пусть тетраэдр ABCD, длина любого ребра а.
    Возможны два случая.
    1.  Плоскость проходит через середину высоты DE параллельно плоскости АВС. В этом случае вершина D находится с одной стороны плоскости, а вершины А, В, С - с другой. То есть высота тетраэдра DE равна 12. Как связаны длина ребра и высота тетраэдра, я выводить не буду, я это тут делал раз 100. 
    DE = а√(2/3)
    откуда а = 12√(3/2) = 6√6;
    2. Противоположные (скрещивающиеся) ребра тетраэдра (то есть не имеющие общих вершин) взаимно перпендикулярны. Можно провести плоскость, параллельную двум таким ребрам, например AC и DB. Чтобы вершины A,C, B и D находились на равном расстоянии от этой плоскости (A и C - с одной стороны, B и D - с другой) плоскость надо провести через середины ребер AD, CD, AB и BC (кстати, в сечении получится квадрат).
    Расстояние между скрещивающимися ребрами тетраэдра равно a√2/2 (это отрезок, соединяющий середины АС и DB, он перпендикулярен построенной плоскости и делится ею пополам - докажите! это очень просто). Отсюда 12 = a/√2; a = 12√2;
     

Поделиться этой страницей

Наша группа